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- Design Specifications A

LARP prsion
 Aperture: 105 mm

Also examined:
»95 mm (produces a more conventional design)

»100 mm (RHIC insertion dipole - detailed proven coil design exists)

e Inter-beam distance: 186 mm

» note this is smaller than 192 mm spacing in nominal LHC dipole
» Target operating point on load-line: 70%
* Integrated field: 35 T.m
» Magnetic length: below 10 m (means field 3.5 T or more)
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BNL has designed, built and delivered 80 mm D2 magnets.
However, there are major differences in this design:

o Significantly larger aperture (105 mm instead of 80 mm)

¢ over 31% more flux for similar overall yoke and cryostat

« Smaller spacing (186 mm instead of 188 mm)

¢ less iron (21 mm instead of 48) between two apertures for more
flux makes cross-talk at higher field a particular challenge

This makes a major impact on field errors due to iron saturation

and also on the fringe field outside the cryostat
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Summary of Results (Preview) g
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Recombination dipole D2 field quality version 1.4 - October 1 2013 - R ;=35 mm SOTU ration
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LARP LHC Main Dipole and D2 Dipole M e
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* Like LHC main dipole, LHC insertion D2 is
also a 2-in-1 dipole.

* In main ring dipoles, however, the field in two
apertures is in opposite direction allowing one
side to provide return flux path to the other.

* This is not the case in D2 since the field is in
the same direction. This means that the flux on
one aperture must return on the same side.

* Reducing cross-talk due to proximity of two
apertures (quadrupole harmonic, etc.) and
other harmonics arising from the insufficient
iron at midplane is the major challenge.

* In 80 mm D2 we were able to overcome this
by the unique oblate yoke design developed at
BNL which provided extra iron at the midplane.

* 105 mm D2 has more flux and less spacing.
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Impact of Relative Polarity (1) "ot
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Field in the opposite direction Field in the same direction
(LHC main dipoles) (D2 dipoles)

LARP

250.0r

Y [mm] Y [mm]

200.0F
150.01
100.01
50.0 X
0.0
-50.0 |

-100.0

=Field is low AN :
between two e between two
apertures (no 2000 Q¥ g & apertures ( high
saturation) U o B “saturatiopf)

Component: BMOD Component: BMOD

eld is Iargje

.16414E-06 3.508560463 7.0 1 37468E-04 3.204237519 6.40t
—ﬁ

20 mm SS collar (as in previous BNL D2)
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@ Impact of Relative Polarity (2)

Field in the opposite direction

(LHC main dipoles)

Return yoke

10”
,_\0.5
—

~_ 1.0
>

M-0.5
-1.0
15
2.0
25

- aperture x(mm)

-3.5 I

Field is lower (~0.5 T) at the

center of the magnet and in the

return yoke (=1 T)
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Field in the same direction

(D2 dipoles)

Return yoke

aperture

x(mm)

D2 conceptual design and field quality optimization

Field is higher (>2.5 T) at the
center of the magnet and also in
the return yoke (>2.T)
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Impact of Relative Polarity (3)  oneewssiey
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Allowed b; (normal saturation) "o

mm]

Component: BMOD
1.82898E-04

Y [mm]

O 05 1 15 2 25 3 35 4 45 5
Field (T) o
Saturation induced sextupole (b3) in D2. Positive in the first

case due to pole saturation, negative in the second case due ,,, &5\ )
to large midplane saturation because of insufficient iron. <00

Component: EMOD
1.23584E-03 3.204786706
—

(also applies to higher order terms such as b, b-, ...)

6.
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« Optimized yoke to reduce saturation induced

harmonics (particularly non-allowed harmonics)

 Design coil to cancel the harmonics due to non-circular

yoke aperture

« Main challenge Is the yoke optimization because of

larger aperture and the field in the same direction:

— Not enough iron (oblate yoke helps)
— lron between the two aperture gets saturated
— Over hundred cases examined using a variety of techniques
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* Oblate yoke has now been successfully used in LHC D2/D4
BNL/LHC MAGNETS

 This saved significant effort and money by allowi e A T OLE
us to use standard LHC cryostat and posts. E

TR

From MT15 Paper

The proposed oblate-shaped yoke also offers a way
to reduce the overall cryostat size in future magnets.
In most magnets, the horizontal size is determined by
the magnetic and mechanical designs and the vertical
size is determined by the heat leak budget and post
design. The two are then added to determine the | _I__
overall size. In modifying the circular yoke shape to
an oblate shape, yoke iron is removed from the
vertical plane, as this material does not contribute to
the magnetic and mechanical design. The vertical
space, thus saved, can be utilized by the post and
thermal shielding, reducing the overall size. The
validity of this design will be tested in the first model
magnet to be built at BNL prior to the production run
of the LHC insertion magnets.
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Variation in Collar Width [BROOKHRVEN
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presented at CM20 - April 2013) M s
« Smaller collar allows more iron within the same envelop

(caution: has impact on mechanical design).
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Approaches Previously Examined
A few presented at CM20 - April 2013 (#1)
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"‘Ir'on removed between the two aperturessnooxsave

Component: BMOD
4 T8058E-03

3166415365
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timized now) "

ob, : +17
ob, : -43
ob,: +1
ob; : -3
obg : -1

Change in quad term (saturation) becomes half but the absolute value (optimized for
circular aperture) for b, becomes about 100 unit and for b, becomes about 30 unit.

» To have low base line harmonics, the coil cross-section
needs to be re-optimized and to have right-left asymmetry.
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Y [mm]
However, add iron to
Increase transfer function,
reduce leakage field and
also reduce allowed terms

 Oblate Yoke
« Add iron outside the Shell

Iron shim

> as used in therecent D1

to reduce quad like terms

Oblate yoke

Remove Iron between the apertures
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containing flux lines
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YImm] 5500 See field
outside the
200.0 cryostat

100.0

Maximum scale:
2mT

0.0

-100.0

Oblate Yoke and
Iron Shims are
300011 helping in
containing flux

-200.0

-100

Component: BMOD
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@ Saturation Harmonics (b,) at 35 mm sromaey
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LARP and Change in Transfer Function W s

d(TF)/TF(%), b2(35mm)

Field (T)
Quad saturation is <5 unit up to 3.5 T. Loss in Transfer
Function is <5% even with significant contribution from iron.
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Saturation Harmonics at 35 mm srooxuruen
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@ Saturation Induced Harmonics (bs-bg) saeounaven

SUPERCONDUCTING

LARP at 35 mm as a Function of Field M o
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Field (T)

~3 unitsup to 4 T (design field 1s 3.5 T)

HiLumi@Daresbury Nov. 13, 2013 D2 conceptual design and field quality optimization ~ Ramesh Gupta, BNL Slide No. 21



NATIONAL LABORATORY

Summary of Results (Preview) A
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Recombination dipole D2 field quality version 1.4 - October 1 2013 - R ;=35 mm SOTU ra*ion

Systematic Uncertainty Random
Normal |Geometric Saturation Persistent Injection High Field| Injection High Field| Injection High Field| @ d d
2 0.000  25.000 0.000 0.000  25.000 0.200 2.500 0.200 2.500 |n uce

18.000  -15.000 -14.200  3.800 3.000 0.727 -1.500 0.727 -1.500

-8.000  10.000 0.000 -8.000 2.000 0.126 0.200 0.126 0.200 har‘mon i CS

3
4
5 4.000 -5.000 -1.000 3.000 -1.000 0.365 -0.500 0.365 -0.500
6
7
8

Harmonic Previous Optimized
0 Recommendations| Design

29 <4

15 <2

10 <1

5 <3
» Higher orders are < 1 units
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Use of Iron Shims to Minimize =roowsnven
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Measured Harmonics M

 Iron Shim outside the Helium
vessel iIs placed to provide critical
extra iron over the oblate shape.

« This shim can also be used to
obtain low harmonics at high
fields despite the differences
between the calculations and
measurements for b.

Iron shim

» This approach has been
successfully used in recent LHC
D1 dipole built at BNL.
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In Recent LHC D1 Dipole Built at BNL e
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Saturation b is adjusted by adjusting shim thickness

) T
: ‘ . 3.5 Sextupole from Shim of Various Thickness

Y [mm] c 3.0 }()E X
E 25 PP e 4
~N
= 20 e
-

. o Nominal Value: 2.5 mm

Fe Sh|m % 1.5 {4:“-“
o
s 1.0
= | e
2 o5

0.0 = L i
0 2000 4000 6000 8000

Current (A)
==5mm =<=4mm -4+-3mm -#-2mm =¢1mm

-100.0

-150.0 Coldmass

Simple, economical and yet

i I VO powerful method to adjust
25001 o1 magnetic) saturation-induced harmonics in
0085500 500 7 2500 as built dipoles — no need to cut

the weld of helium vessel, etc.

Cryostat
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@ LHC 80 mm APUL D1 Dipoles #106 & #107 built at BNL soxsiiasoramory
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Program Goal:
Sextupole < 2 unit @5600

Achieved: ~ 0.2 unit @5600 in both

(initial adjustment was made with pole shims)

NP g

Highlights of the Technique:
» Adjustable iron shims
outside Helium vessel
moved sextupole (b,) to
near zero at high fields

ja
moved up with adjustedﬁ

Int. Normal Sextupole (units at 17 mm)

-0
D1L107: Up Ramp Harmonics (5.9 kA Loops)
=e—DI11.106 (Up Ramp) 20 1 . | | ‘ |
1.5 +—  Shifted to make value at 2 kA =0
=4—DI1L107 (Up Ramp) g !0 | |
= 0.5
-8 =00 *-0-0-0
= <05 h-H =Ild:
Z -1.0 /'
=
2 s / !
g 2.0 =@~ Positions 2-9 (5 mm shims)
- 1 0 . 25 J | =0O=Up Ramp to quench (6450A)
\ |
-3.0 t t
D 1 000 2 000 3000 4000 5 000 6000 0 1000 2000 3000 4000 5000 6000 7000
Magnet Current (A) Current (A)

Measured data courtesy Animesh Jain
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Coil Cross-section Design e

« The aperture of RHIC insertion dipole DO 1s100 mm.
This is very close to 105 mm.

 RHIC DO is a fully optimized and proven design. Several
good field quality magnets have been built.

» Therefore, a reasonable starting point could be to scale
and tweak the coil design of RHIC DO.

« RHIC 100 mm DO had 40 turns in five blocks. Allow 42
turns in five blocks of the 105 mm LHC D2 coll.

« Use ROXIE to fine tune the coil cross-section.
 First start with the cross-section having dipole symmetry.
« Then adjust it to compensate for the non-zero harmonics.
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LHC 105 mm D2 Coil Cross-section ™
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(optimized with ROXIE for circular yoke)

LHC D2 - 105 mm using RHIC Cable 13/03/28 15:58

IBI (T) Dipole symmetry

4,620
4.380
4,140
3.900

3.661
3.421
3.181
294
2.702
2.462
2.222
1.982
1.743
1.503
1.263
1.023
0.754
0.544
0.304
0.064

ROXIE 102

0 10 20 30 40 50 60 70
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LHC 105 mm D2 Coil Cross-section

LHC D2 - 105 mm using RHIC Cable 13/03/28 15:58

1Bl (T)

L N |
= oY Te,

4.140
3.900
3.661
3421
3181
2,94
2.702
2.462
2,222
1.982
1.743
1.503
1.263
1.023
0.784
0.544
0.304

Roxtizj " ' ‘ ‘-t
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Dipole symmetry
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@ 105 mm D2 Coil Harmonics @35 mm = smowe
LARP

AGNET
DIVISION

Optimization with ROXIE

REFERENCE RADIUS (MM) &ttt vttt ittt et tnenesennnsesens 35.0000
X-POSITION OF THE HARMONIC COIL (mm) ....eeeeeoenonn.. 0.0000
Y-POSITION OF THE HARMONIC COIL (mMm) ..ueeeeveunnnnnn 0.0000
MEASUREMENT TYPE ...ttt ALL FIELD CONTRIBUTIONS
ERROR OF HARMONIC ANALYSIS OF Br ........ciiiionn. 0.2045E-02

SUM (Br(p) - SUM (An cos(np) + Bn sin(np))

MAIN FIELD (T) & vttt ittt ittt e ettt it tnnnnnneeeens -4.109409
MAGNET STRENGTH (T/ (M (N=1)) tuvutemen e teenenennnn -4.1094

NORMAL RELATIVE MULTIPOLES (1.D-4):

b 1: 10000.00000 b 2: 0.00000 Db 3: 0.03316
b 4: 0.00000 Db 5: 0.03930 b 6: 0.00000
b 7: 0.14095 Db 8: 0.00000 Db 9: 0.14324
bl10: 0.00000 Dbll: 0.48417 Dbl2: 0.00000
bl3: 0.39692 Dbl4: 0.00000 Dbl5: -0.20657
blo: 0.00000 Db17: -0.35482 Dbl8: 0.00000
bl9: 0.07375 Db20: 0.00000 b

Dipole symmetry
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Optimization of Coil X-section with AP

UPERCONDUCTING
AGNET

LARP Non-Zero Geometric Harmonics Do

18

« Saturation in RHIC IR Quad was
minimized with removing significant

16

14

amount of saturating iron from the pole
Q ‘ (similar challenge as here).

Q » The coil cross-section was re-optimized
_j@ to compensate for the non-zero
T Ne——R=92mm . .

] harmonics for a symmetric iron.
] % @

% «—R =87 mm

0 2 4 & ] 10 12 14 16 18
RAIC 2 01 BEGIN KEY FIN TIE ROD  CYCLE - 0

12

10

« We would use a similar approach in
LHC 105 mm D2 dipole facing a similar
challenge.

POISSON model of a quadrant of
the 130 mm aperture RHIC IR quad
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BROOKHFEAEN
NATIONAL LABORATORY
sUPERCONDUCTING

AGNET

LARP Coul to Off-set Non-zero Geometric Harmonics (1) "™

LHC D2 - 105 mm offset harmeonics 131112 12:40

e \x N

o @@

Note a left-right § @ The goal is to have

asymmetry to % small low field

compensate for the - harmonics and

left-right asymmetry % " ideally zero

In the yoke iron harmonics at the
@ @ design field

4

TR
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NATIONAL LABORATORY

SUPERCONDUCTING
AGNET

LARP Coil to Off-set Non-zero Geometric Harmonics (2)“'I o

LHC D2 - 105 mm offset harmonics 131112 12:43

Bl (T}

4.608
4.453
4.208
3.063
3718
3473
3.229
2.084
2739
2.404
2.249

Deliberate

1.759
1.5135
1.270
1.025
0.780
0.535
0.260

HD}::T:_E \ ’ l l ‘ “' /
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@ [BROOKHRUEN
LARP DIVISION
 Largeincrease in flux (over 31% due to increase in aperture - 80 mm

to 105 mm) and field in the same direction makes the optimization of

the yoke very challenging for the allowed and non-allowed harmonics.

« However, atechnique has been developed (oblate yoke, missing iron
between the aperture and extra iron outside the shell) that, in
principle, can make the 105 mm dipole with low saturation induced

harmonics (both allowed and non-allowed) and small fringe fields.

 Jron shim outside the Helium vessel can also be used to reduce

measured b; — making the design even more dependable.

« With a properly optimized coil design, the expected harmonics can

be reduced by a large amount over what was previously expected.
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